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On the Performance of the Mismatched MMSE and
the LS Linear Equalizers

Athanasios P. Liavas, Member, IEEE, and Despoina Tsipouridou

Abstract—We consider two widely referenced trained fi-
nite-length linear equalizers, namely, the mismatched minimum
mean square error (MMSE) equalizer and the least-squares (LS)
equalizer. Using matrix perturbation theory, we express both
of them as perturbations of the ideal MMSE equalizer and we
derive insightful analytical expressions for their excess mean
square error. We observe that, in general, the mismatched MMSE
equalizer performs (much) better than the LS equalizer. We at-
tribute this phenomenon to the fact that the LS equalizer implicitly
estimates the input second-order statistics, while the mismatched
MMSE equalizer uses perfect knowledge. Thus, assuming that the
input second-order statistics are known at the receiver, which is
usually the case, the use of the mismatched MMSE equalizer is
preferable, in general.

Index Terms—Intersymbol interference, least-squares (LS)
equalization, minimum mean square error (MMSE) equalization,
performance analysis.

I. INTRODUCTION

L INEAR equalization is a well-known receiver technique
for combatting intersymbol interference (ISI). Linear

equalizers are usually computed by minimization of either the
mean square error (MSE) cost function or the least-squares
(LS) error cost function.

If we know the channel impulse response and the input and
noise first- and second-order statistics, then we can compute
the minimum MSE (MMSE) equalizer [1, Sec. 2.7.3]. An
assumption that will be used throughout this work is that the
input is i.i.d., with zero-mean and unit variance and the noise is
white Gaussian (thus, the receiver can exploit this information).
Practically always, the channel impulse response and the noise
variance are unknown at the receiver. A common approach
toward the design of the MMSE equalizer, in the cases where
the channel impulse response and the noise second-order sta-
tistics are unknown at the receiver, is to estimate them using
training data and, then, use the estimates as if they were the
true quantities. We denote the resulting equalizer mismatched
MMSE equalizer.

On the other hand, in the direct LS equalization approach, we
use the training data and directly compute at the receiver the LS
optimal equalizer without the intermediate computation of the
channel impulse response and the noise second-order statistics
(see, for example, [2, Sec. 13.2.1] for the real-valued case). We
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note that the LS equalizer cannot exploit the knowledge about
the input second-order statistics that is available at the receiver.

Despite the fact that these approaches are widely referenced,
there does not exist, to our knowledge, any study concerning
their relative performance. In this paper, we compare their
performance by adopting as performance measure the MSE.
Using matrix perturbation theory, we express both the mis-
matched MMSE and the LS equalizers as perturbations of the
ideal MMSE equalizer, that is, the equalizer that minimizes
the MSE by assuming exact knowledge of the true quantities.
Then, we derive second-order approximations to the excess
MSE associated with the mismatched MMSE and the LS
equalizers (computation of the excess MSE for many adaptive
algorithms appears in [1, Ch. 7] and the references therein).
The analytic expressions provide significant insight into the
behavior of the above mentioned equalizers. In general, the
mismatched MMSE equalizer performs (much) better than the
LS equalizer. The main reason for this superiority is the fact
that the LS equalizer implicitly estimates the input second-order
statistics, while the mismatched MMSE equalizer uses perfect
knowledge.

A. Notation and Matrix Results

Superscripts , , and denote, respectively, transpose, com-
ponentwise conjugate, and conjugate transpose. denotes ex-
pectation, denotes the identity matrix, de-
notes the zero matrix, and denote, respec-
tively, the trace and the Frobenius norm of matrix , and
denotes the Euclidean norm of vector . denotes the Kro-
necker product of and and denotes the vectorization
operator. We remind that for matrices with compatible dimen-
sions [3, p. 19]

(1)

and [3, p. 17]

(2)

If is a perturbation to matrix , then a first-order approxi-
mation to the inverse of is given by [4, p. 131]

(3)

The rest of the paper is structured as follows. In Section II,
we present the ISI channel model. In Sections III and IV,
respectively, we consider the mismatched MMSE and the LS
equalizers and we develop second-order approximations to
their excess MSE. These approximations provide significant
insight into the behavior of the mismatched MMSE and the
LS equalizer and lead to a comparison of their performance in

1053-587X/$25.00 © 2007 IEEE



LIAVAS AND TSIPOURIDOU: ON THE PERFORMANCE OF THE MISMATCHED MMSE AND THE LS LINEAR EQUALIZERS 3303

Section V. In Section VI, we illustrate our theoretical results
with simulations and we conclude the paper in Section VII.

II. CHANNEL MODEL

We consider the discrete-time baseband-equivalent noisy
communication channel described by the convolution

(4)

where , and denote, respectively, the channel input,
output and noise samples at time instant . The channel
impulse response is denoted . Commu-
nication is based on length- data packets .
By stacking consecutive output samples, we obtain

1, which can be expressed as

(5)

where is the filtering matrix defined
as

. . .
. . . (6)

The noise samples are assumed to be i.i.d., zero-mean, circu-
larly symmetric complex Gaussian with variance . The input
samples are assumed to be i.i.d., zero-mean, complex-valued
circular, with variance 1.

III. FINITE-LENGTH MMSE LINEAR EQUALIZER

A. Ideal Finite-Length MMSE Linear Equalizer

An order- delay- linear equalizer is determined by vector
. Its output at time instant , , is an

estimate of the (delayed) channel input, , and is given by

(7)

The symbol estimation error at time instant , , is expressed
as

where is the vector with 1 at the st
position and zeros elsewhere.

The mean-square symbol estimation error can be expressed
as a function of as follows:

(8)

where

1If a is a vector and i > j , we define a [a a . . . a a ] .

The order- delay- ideal MMSE linear equalizer, , is given
by the expression [1, Sec. 2.7.3]

(9)

If we know the channel impulse response and the input and noise
second-order statistics, then we may proceed to the design of the
MMSE equalizer. Usually, the channel and the noise variance

are unknown at the receiver (recall that we have set the vari-
ance of the i.i.d. input equal to 1). A common approach towards
the design of the MMSE equalizer is to estimate and using
training data and then use the estimates as if they were the true
quantities.

In the sequel, we shall assume that the input samples
, with , are known at the

receiver and used for training purposes.

B. Channel and Noise Variance Estimation

In this subsection, we assume that the channel is constant
but unknown and we estimate it using the maximum likelihood
(ML) method. Collecting the channel output samples that de-
pend only on the training samples, we obtain

where

...
. . .

...

The ML channel estimate, which, in this case, coincides with
the LS estimate, is given by [1, p. 697]

The channel estimation error, , is of first-order with
respect to the noise, that is, its elements are linear combinations
of the noise samples . It can be easily shown
that is zero-mean, circular, with covariance matrix

(10)

In the above expression, we regarded the training sequence as
deterministic. If we consider it as stochastic, then we must take
expectation with respect to the training samples as well (in Ap-
pendix, we provide guidelines for this computation). is in-
dependent of and for . Thus, we con-
sider as a random vector independent of the random input
and noise.

An unbiased estimate of the noise variance is given by [1, p.
697]

(11)
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The noise variance estimation error, , is
of second-order with respect to the noise, that is, it is linear
combination of terms that are products of independent noise
samples (in fact, it can be shown that the variance of is

). Consequently, it is negligible in comparison
with , for sufficiently high SNR. Thus, in the sequel, we
shall assume that .

Minimization of is achieved by selecting the
training sequence such that [5, pp. 787–788]

(12)

Training sequences that closely satisfy this constraint can
be constructed by periodic extension, with period , of the
so-called CAZAC (constant amplitude zero autocorrelation)
sequences, with examples given in [5, Table 15-3]. It can be
easily checked, e.g., by a computer search, that if
and , with being a positive integer, then the
corresponding training sequences perfectly satisfy constraint
(12). In this case

(13)

C. Computation of the Excess MSE of the Mismatched
MMSE Equalizer

The analysis of this subsection resembles that of Sec-
tion IV-A of [6]. In order to preserve the readability of the
paper and to introduce the definitions of the involved quantities,
we briefly present the whole analysis.

If we use in (9) the channel estimate as if it were the true
channel, we compute the mismatched MMSE equalizer

(14)

where is the filtering matrix constructed
by . For later use, we define . Applying for
input estimation, we obtain the estimation error

(15)

Taking expectation, with respect to the input and the noise, we
obtain

(16)

Taylor expansion of function around the point leads
to

(17)

where . In the above expansion, we used the fact that
the gradient of at point is zero, due to the optimality
of .

Taking expectation, with respect to the channel estimation
errors, we obtain the excess MSE (EMSE)

(18)

In the following, we derive an analytic expression for the EMSE
achieved by the mismatched MMSE equalizer in terms of the
channel estimation error covariance matrix, .

We start by providing a first-order approximation to . Ig-
noring products of error terms inside the parenthesis in (14), we
obtain

where

(19)

(20)

Using approximation (3), we obtain

(21)

Ignoring products of error terms in (21), we obtain the first-order
approximation

(22)

which leads to

(23)

Using (18), we obtain the second-order approximation

(24)

In order to compute the above expectation, we must express

in terms of .
1) We start with . If we define the com-

bined (channel-MMSE equalizer) impulse response

(25)

and

(26)

then it follows easily that
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where is the Hankel matrix

...
...

2) Due to the commutativity property of the convolution, term
can be expressed as

where is the filtering matrix
constructed by vector .

Thus, we obtain that

(27)

which, using (24), gives (note that the cross-terms vanish due to
the circular symmetry of )

(28)

D. Simplifications in the High-SNR Cases

It can be easily shown that

(29)

Thus, for sufficiently high SNR, mid-range delays and suffi-
ciently large equalizer length (implying small MMSE), the first
term of the sum in (28), which is constructed using , is of the
order of the MMSE and thus negligible compared to the second
(this claim is confirmed in the simulations section). In this case,
we approximate the EMSE in (28) as

(30)

The most insightful case arises when
, that is, when we perform op-

timal channel estimation [recall (13)]. A first-order
approximation to , with respect to , is

Reminding that , expression (30) becomes

where at point (a) we defined the projector onto the column
space of , , at point (b) we used the positive semi-def-
initeness of and at point (c) we used the struc-
ture of .

Thus, we have that2

(31)

In extensive simulation studies, we have observed that this
bound is a very good approximation to the (experimentally
computed) true EMSE, for SNR higher than 5 dB. This ap-
proximation states that the EMSE of the mismatched MMSE
equalizer is proportional to the channel noise variance
(note that, since , equals the inverse SNR), with the
proportionality coefficient determined by the parameters
and and the 2-norm of the ideal MMSE equalizer .

IV. TRAINED LS LINEAR EQUALIZER

The order- delay- trained LS linear equalizer solves the
minimization problem (for the real-valued case, see, for ex-
ample, [2, p. 249])

where is the Hankel matrix defined as

...
...

Assuming that matrix is invertible, we obtain

(32)

Using the channel input-output relation (4), we can express ma-
trix as

where is the Hankel matrix defined as

...
...

...

and contains noise samples and is of the same form as .
Thus, we obtain

(33)
and

(34)

2Using (29), we can derive the simple and informative bound

EMSE(f̂) <
M + 1

N �M
MMSE:

However, since MMSE reaches a floor for high enough SNR, this bound also
exhibits a floor and, thus, is much less useful than the one appearing in (31),
especially at high SNR.
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In the following, we express random quantities3 ,
and as perturbations of their mean values. At first, we
note that

and

Then, we make the substitutions

(35)

(36)

(37)

where , , and are the corresponding per-
turbations. Term is of first-order with respect to the noise,
while term is of second-order with respect to the noise and
thus is negligible in comparison with at sufficiently high
SNR. Thus, in the sequel, we shall assume that .

By substituting the values of (35)–(37) in (33) and (34), we
obtain

where

and

where

If we substitute the above values in (32) and use approximation
(3), we obtain

(38)

By ignoring products of error terms in (38) and using (9), we
obtain the first-order approximation

(39)

We observe that the direct LS equalizer can be expressed as a
perturbation of the MMSE equalizer, similarly to (22), leading
to an expression for the EMSE analogous to (24). More specif-
ically

(40)

A. Computation of the EMSE of the LS Equalizer

In this subsection, we provide an analytic expression for the
EMSE induced by using the LS equalizer instead of the ideal

3In order to keep the analysis as general as possible, we consider matrices S
as random. However, there exist cases of particular interest, for example, when
S S = N I , where it is preferable to consider S as deterministic.

MMSE equalizer. At first, we express analytically term
as follows:

(41)
Using the fact that the input and noise sequences are mutually
independent, circular and zero-mean, it can be shown that the
cross-covariance terms , for 1, 2, 3 and ,
vanish identically. From (40) and (41), we obtain

(42)

In the sequel, we shall consider the three terms of the above
sum.

1) Using (26) and (2), we obtain

(43)

The expression for the covariance matrix of , de-
noted , is provided in the Appendix.

Remark 1: If , then term and, thus,
identically vanish. This can be achieved if we construct se-

quence by periodic extension, with
period , of the CAZAC sequences of [5, Table 15-3], with

and , with being a
positive integer. However, in this case, the number of the sam-
ples that do not carry information but are used for “training pur-
poses” is . This should be taken into account for
a fair comparison between the mismatched MMSE and the LS
equalizer.

Remark 2: If is considered as deterministic, then we do
not have to take expectation and depends, through , on the
particular realization of .

Remark 3: If the number of training samples is small, then
may be large [see (53)], and thus the first-order approximation in
(39), with respect to , is not very accurate. However, higher-
order approximations seem very complicated and do not offer
significant further insight into the behavior of the LS equalizer.

Remark 4: Term depends on , whose 2-norm squared
is approximately equal to the MMSE for sufficiently high SNR,
and , which depends on the number of training samples but
is independent of the SNR. Thus, will reach a floor and re-
main almost constant for high enough SNR. This fact makes the
significant difference between the mismatched MMSE and the
LS equalizer, in the cases where does not identically vanish.
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2) The second term of the right-hand side of (42) is ex-
pressed as

(44)

We recall that . It can be easily
shown that

where is the filtering matrix con-
structed by . Furthermore

where is the
matrix

...
. . .

and denotes the zero vector. In the
sequel, we shall drop the long subscripts and denote the
corresponding vectors as and . Thus, is given by
the expression

(45)

Remark 5: If is regarded as deterministic, then we do not
have to take expectation with respect to the training samples. In
this case, depends on the specific realization of and equals
the expression (without the expectation) in the second or third
line of (45).

3) The third term of the right-hand side of (42) is expressed
as

(46)

It can be shown that

where is the filtering matrix
constructed by and

where is the matrix with the
same form as but with replacing and, of
course, the analogous changes to the zero vectors. Thus,
is given by the expression

(47)

Remark 6: If is regarded as deterministic, then depends
on the specific realization of . Using analogous techniques, it
can be shown that in this case

(48)

B. Simplifications in the High-SNR Cases

In the high-SNR cases, for the mid-range delays and suffi-
ciently large equalizer lengths, will be negligible compared
with , since it is constructed using . An approximation to

is derived as follows:

(49)

where at point we used the fact that and
at point we used (1).

Due to the structure of , it holds that

Thus we derive the bound

.

(50)

In extensive simulation studies, we have observed that this
bound is a very good approximation to and, thus, to the
EMSE of the LS equalizer, when and, thus, , is zero.
is proportional to the noise variance (or inverse SNR), , just
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like the EMSE of the mismatched MMSE equalizer, with the
only difference being in the associated constants.

V. COMPARISON OF THE MISMATCHED MMSE AND THE LS
LINEAR EQUALIZERS

In this section, we use the derived results and compare the
mismatched MMSE and the LS equalizers. At first, we make
the comparison for two extreme but important cases.

1) Case 1: . This is the ideal
case for the mismatched MMSE equalizer, yielding

. For sufficiently high
SNR, we obtain

(51)

Using bounds (31) and (50) as approximate equalities, we
obtain

(52)

which is larger than 1 for

and converges to for tending
to infinity. However, ratio (51) is much larger, due to the
contribution of , which exhibits a floor depending on the
number of the training samples and the equalizer length.
Consequently, the ratio of the EMSEs in (51) tends to in-
finity as the SNR tends to infinity. In this case, the mis-
matched MMSE equalizer (significantly) outperforms the
LS equalizer.

2) Case 2: . This is the ideal case for the
LS equalizer, because and, thus, , identically vanish.
At high enough SNR, we have that .
For the values of and we use in the simulations (

and ), we have uncovered one CAZAC sequence
leading to zero . It is the eighth sequence appearing in
[5, Table 15.3]. The EMSE for the mismatched MMSE
is given by (30), with , with
being the Hankel matrix constructed by the training sam-
ples . In the simulations section,
we shall see that the mismatched MMSE equalizer outper-
forms the LS equalizer, in this case, as well.

Finally, if the training samples are random, then the
mismatched MMSE (significantly) outperforms the LS
equalizer because the EMSE of the mismatched MMSE is
proportional to the noise variance (recall that in this case

), while the EMSE of the LS
equalizer (and, more specifically, term ) reaches a floor and
remains constant for high enough SNR.

VI. SIMULATIONS

In this section, we check our theoretical results with simula-
tions. We present the results for a randomly generated channel

TABLE I
CHANNEL IMPULSE RESPONSE

Fig. 1. MSE achieved by the ideal MMSE, the mismatched MMSE and the LS
equalizers.

having impulse response given in Table I, with , equal-
izer order and delay . Analogous results have been
observed in extensive simulations with other parameter values.

1) Simulation 1: Ideal input for the mismatched MMSE
equalizer.

The training sequence is constructed by periodic extension of
the seventh sequence of [5, Table 15-3] and contains
training samples.

In Fig. 1, we present the MSE achieved by the MMSE, the
mismatched MMSE and the LS equalizers. At first, we observe
that all equalizers exhibit an MSE floor. This was to be expected
because a finite-length linear equalizer cannot equalize perfectly
an FIR channel, even in the noiseless case. Furthermore, we
observe that the mismatched MMSE significantly outperforms
the LS equalizer in terms of MSE. More specifically:

1) the MSE of the mismatched MMSE equalizer tends to the
MMSE for increasing SNR, because, as we see in (31), the
EMSE of the mismatched MMSE equalizer is proportional
to the noise variance, which goes to zero as the SNR goes
to infinity;

2) the MSE of the LS equalizer does not tend to the MMSE
for increasing SNR, because the EMSE of the LS equalizer
does not tend to zero for increasing SNR, due to the fact
that term is almost constant for high enough SNR. The
value of depends on the size of , which reaches a floor
for sufficiently high SNR, and , which depends on the
number of training samples.
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Fig. 2. Theoretical (second-order approximation) and experimentally com-
puted EMSE for the mismatched and the LS equalizers.

Fig. 3. First and second components of the second-order approximation EMSE
(28) for the mismatched MMSE equalizer.

In Fig. 2, we present the theoretical second-order approxi-
mations (SOAs) (28) and (42) and the associated experimen-
tally computed EMSEs for the mismatched MMSE and the LS
equalizer. We observe that the theoretical EMSE for the mis-
matched MMSE equalizer practically coincides with the exper-
imental EMSE. On the other hand, the theoretical expression is
less accurate for the LS equalizer. This happens because, for
small number of training samples, the first-order approxima-
tion in (39), with respect to , is not very accurate. We have
observed that this discrepancy disappears for sufficiently large
number of training samples (e.g., ).

In Fig. 3, we plot the first and second components of the
theoretical EMSE of (28). We observe that, for SNR higher
than 5 dB, the contribution of the term that involves matrix
is much smaller (about two orders of magnitude) than the contri-
bution of the term involving , confirming our claim appearing
before (30).

Fig. 4. Experimentally computed EMSE and bound (31) for the mismatched
MMSE equalizer.

Fig. 5. MSE achieved by the ideal MMSE, the mismatched MMSE and the LS
equalizers.

In Fig. 4, we plot the experimentally computed EMSE for the
mismatched MMSE equalizer and bound (31), confirming that
bound (31) is a very good approximation to the EMSE of the
mismatched MMSE equalizer for SNR higher than 5 dB.

2) Simulation 2: Ideal input for the LS equalizer.
In order to have identically zero, we use training sequence

, with 30 samples, constructed by the
periodic extension of the eighth sequence of [5, Table 15-3].

In Fig. 5, we plot the MSE achieved by the MMSE, the mis-
matched MMSE and the LS equalizers. We observe that the mis-
matched MMSE equalizer outperforms the LS equalizer in this
case as well. For high enough SNR, all quantities practically co-
incide. This happens because, in this case, the EMSEs for both
the mismatched and the LS equalizers are proportional to the
noise variance (recall that vanishes identically) and go to zero
as the SNR goes to infinity.
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Fig. 6. Theoretical (second-order approximation) and experimentally com-
puted EMSE for the mismatched and the LS equalizers.

Fig. 7. Experimentally computed EMSE and bound (50) for the LS equalizer.

In Fig. 6, we check the accuracy of the theoretical expressions
for the EMSE. We observe that our expressions are very accurate
over a very wide range of SNRs. Furthermore, we observe that
the EMSE of the mismatched MMSE is smaller than that of the
LS equalizer and that their ratio tends to a limit for increasing
the SNR (this becomes obvious from the fact that the curves
representing the EMSEs become parallel for high enough SNR).

Finally, in Fig. 7, we observe that bound (50) is a very good
approximation of the EMSE of the LS equalizer for SNR higher
than 10 dB.

The case with random training samples resembles the one
presented in Simulation 1 and thus we do not present graphical
simulation results.

VII. CONCLUSION

We considered two widely referenced trained finite-length
linear equalizers, namely, the mismatched MMSE and the LS

equalizer. Using matrix perturbation theory, we expressed both
of them as perturbations of the ideal MMSE equalizer and we
derived insightful analytical expressions for their excess MSE.
We observed that, in general, the mismatched MMSE equal-
izer performs (much) better than the LS equalizer. This hap-
pens because the LS equalizer implicitly estimates the input
second-order statistics, while the mismatched MMSE equalizer
uses perfect knowledge. Thus, when the input second-order sta-
tistics are known at the receiver, which is usually the case, the
use of the mismatched MMSE equalizer is preferable, in gen-
eral. In this work, we assumed that the order of the channel im-
pulse response, , is known. An interesting topic might be the
comparison of the mismatched MMSE and the LS equalizers in
the cases where the channel order is underestimated.

APPENDIX

A. Expression for : We remind that
. We denote the -th element of

as . If , then . For , we
have

where the last equality is due to the Hermitian structure of .
The autocorrelation of and is given by

if

otherwise.

The element lies at the -th
position of . Introducing indices

and , for
, we obtain

if

otherwise.
(53)

B. Channel Estimation Error Covariance Matrix in the
Case of Random Training Samples: In the sequel, we pro-
vide guidelines for the computation of the channel estimation
error covariance matrix, , when the training samples are
independent zero-mean unit-variance random variables. If

, then we can express as the
perturbation

with . If we define , then

can be approximated to second order, with
respect to , as follows:

Then, using techniques analogous to those of Section A of this
Appendix, we can compute the above expectations.
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